Comment on 'Correlative amplitude-operational phase entanglement embodied by the EPRpair eigenstate $|\eta\rangle^{\prime}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys. A: Math. Gen. 36289
(http://iopscience.iop.org/0305-4470/36/1/320)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 02/06/2010 at 11:27

Please note that terms and conditions apply.

COMMENT

Comment on 'Correlative amplitude-operational phase entanglement embodied by the EPR-pair eigenstate $|\eta\rangle$ '

Alfredo Luis
Departamento de Óptica, Facultad de Ciencias Físicas, Universidad Complutense, 28040 Madrid, Spain
E-mail: alluis@fis.ucm.es

Received 1 May 2002
Published 10 December 2002
Online at stacks.iop.org/JPhysA/36/289

Abstract

In a recent paper in this journal Fan (Fan H 2002 J. Phys. A: Math. Gen. 35 1007) discards the possibility of using a genuine phase-difference operator to investigate number-phase entanglement because of the lack of unitarity of the Susskind-Glogower phase operators. However, Fan overlooked the existence of a bona fide unitary operator exponential of the phase difference. Here we find the amplitude-phase maximally entangled states as the simultaneous eigenstates of the total number and the phase-difference operators.

PACS numbers: 42.50.Dv, 03.65.Ud

In a recent work Fan investigated the existence of number-phase entangled states [1]. After examining the quantum description of these variables the author abandons the possibility of using the phase-difference variable because the operator exponential of the phase difference that the author employs (the product of Susskind-Glogower phase operators [2]) is not unitary. Instead, the author considers another operator that no longer represents the genuine phasedifference variable, but a noisy version of a single mode phase [3].

However, it should be stressed that it is possible to represent the phase difference by a Hermitian operator and the exponential of the phase difference by a unitary operator. This was demonstrated in [4, 5], rediscovered in [6] and verified experimentally in [7]. Its properties have been further examined in [8]. This operator, which was overlooked in [1], should be crucial for investigating number-phase entanglement. In this comment, we complete the approach of Fan showing that this operator serves to construct genuine maximally entangled states with respect to the amplitude and phase variables.

The unitary operator exponential of the phase difference \mathcal{E} is naturally defined by the unitary solution of the two-mode polar decomposition

$$
\begin{equation*}
a_{1} a_{2}^{\dagger}=\sqrt{a_{2}^{\dagger} a_{2} a_{1} a_{1}^{\dagger}} \mathcal{E}=\mathcal{E} \sqrt{a_{1}^{\dagger} a_{1} a_{2} a_{2}^{\dagger}} \tag{1}
\end{equation*}
$$

where a_{1}, a_{2} are the annihilation operators for the corresponding modes. It has been shown that this equation admits unitary solutions $\mathcal{E}^{\dagger} \mathcal{E}=\mathcal{E}^{\dagger}=1$ [3, 5]. It should be noted that the product of Susskind-Glogower operators used in [1] is a non-unitary solution of the same polar decomposition (1). On the other hand, the operational phase operator finally considered in [1] satisfies a different polar decomposition that is not proportional to $a_{1} a_{2}^{\dagger}$, so it represents a phase-angle variable different from what is usually understood as the phase difference.

For continuous Cartesian conjugate variables X_{j}, P_{j}, with $j=1,2$ and $\left[X_{j}, P_{j^{\prime}}\right]=$ i $\delta_{j, j^{\prime}},\left[X_{j}, X_{j^{\prime}}\right]=\left[P_{j}, P_{j^{\prime}}\right]=0$, the common eigenstates of the commuting operators $X_{1}-X_{2}$ and $P_{1}+P_{2}$ are maximally entangled states for the X, P variables [9]. In our case the conjugate variables are number and phase. Accordingly, it can be expected that the simultaneous eigenstates of the phase difference \mathcal{E} and the number sum $a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}$ (total number) are maximally entangled states.

It can be seen that their common eigenvectors are the states $\left|N, \phi_{N, r}\right\rangle$
$\mathcal{E}\left|N, \phi_{N, r}\right\rangle=\mathrm{e}^{\mathrm{i} \phi_{N, r}}\left|N, \phi_{N, r}\right\rangle \quad\left(a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}\right)\left|N, \phi_{N, r}\right\rangle=N\left|N, \phi_{N, r}\right\rangle$
with

$$
\begin{equation*}
\left|N, \phi_{N, r}\right\rangle=\frac{1}{\sqrt{N+1}} \sum_{n=0}^{N} \mathrm{e}^{\mathrm{i} n \phi_{N, r}|n\rangle_{1}|N-n\rangle_{2}} \tag{3}
\end{equation*}
$$

where $|n\rangle_{j}$ are number states in the corresponding mode,

$$
\begin{equation*}
\phi_{N, r}=\phi_{N, 0}+\frac{2 \pi}{N+1} r \quad r=0,1, \ldots, N \tag{4}
\end{equation*}
$$

and $\phi_{N, 0}$ are arbitrary phases.
It can be deduced by simple inspection that $\left|N, \phi_{N, r}\right\rangle$ are maximally entangled states, as conjectured above. This was already noted in [10] and applied to quantum teleportation in [11]. This completes the key of this comment: to demonstrate the existence of genuine amplitude-phase entanglement derived from a bona fide phase-difference operator overlooked in [1].

References

[1] Fan H 2002 J. Phys. A: Math. Gen. 351007
[2] Susskind L and Glogower J 1964 Physics 149
Carruthers P and Nieto M M 1968 Rev. Mod. Phys. 40411
Bergou J and Englert B-G 1991 Ann. Phys., NY 209479
Lynch R 1995 Phys. Rep. 256367
Peřinová V, Lukš A and Peřina J 1998 Phase in Optics (Singapore: World Scientific)
[3] Luis A and Sánchez-Soto L L 2000 Progress in Optics vol 41 (Amsterdam: Elsevier) p 421
[4] Lévy-Leblond J M 1976 Ann. Phys., NY 101319
Lévy-Leblond J M 1977 Phys. Lett. A 64159
[5] Luis A and Sánchez-Soto L L 1993 Phys. Rev. A 484702
[6] Yu S 1997 Phys. Rev. Lett. 79780
[7] Trifonov A, Tsegaye T, Björk G, Söderholm J and Goobar E 1999 Opt. Spectrosc. 87611
Trifonov A, Tsegaye T, Björk G, Söderholm J, Goobar E, Atatüre M and Sergienko A V 2000 J. Opt. B: Quantum Semiclass. Opt. 2105
[8] Luis A, Sánchez-Soto L L and Tanaś R 1995 Phys. Rev. A 511634
Pegg D T and Vaccaro J A 1995 Phys. Rev. A 51859
Luis A and Sánchez-Soto L L 1995 Phys. Rev. A 51861
Luis A and Sánchez-Soto L L 1996 Phys. Rev. A 53495
Luis A and Peřina J 1996 Phys. Rev. A 544564
Yu S 1997 Phys. Rev. A 563464
Javanainen J and Wilkens M 1997 Phys. Rev. Lett. 784675

Luis A and Peřina J 1998 J. Phys. A: Math. Gen. 311423
Yu S and Zhang Y 1998 J. Math. Phys. 395260
Luis A and Sánchez-Soto L L 1999 J. Opt. B: Quantum Semiclass. Opt. 1668
Marburger J H III and Das K K 1999 Phys. Rev. A 592213
Söderholm J and Björk G 1999 Opt. Spectrosc. 87513
Wu S and Zhang Y 2000 Nuovo Cimento B 115297
[9] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47777
Duan L-M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 842722
[10] Björk G and Söderholm J 1999 J. Opt. B: Quantum Semiclass. Opt. 1315
[11] Yu S and Sun Ch-P 2000 Phys. Rev. A 61022310

