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Abstract
In a recent paper in this journal Fan (Fan H 2002 J. Phys. A: Math. Gen. 35
1007) discards the possibility of using a genuine phase-difference operator to
investigate number-phase entanglement because of the lack of unitarity of the
Susskind–Glogower phase operators. However, Fan overlooked the existence
of a bona fide unitary operator exponential of the phase difference. Here
we find the amplitude–phase maximally entangled states as the simultaneous
eigenstates of the total number and the phase-difference operators.

PACS numbers: 42.50.Dv, 03.65.Ud

In a recent work Fan investigated the existence of number-phase entangled states [1]. After
examining the quantum description of these variables the author abandons the possibility of
using the phase-difference variable because the operator exponential of the phase difference
that the author employs (the product of Susskind–Glogower phase operators [2]) is not unitary.
Instead, the author considers another operator that no longer represents the genuine phase-
difference variable, but a noisy version of a single mode phase [3].

However, it should be stressed that it is possible to represent the phase difference by a
Hermitian operator and the exponential of the phase difference by a unitary operator. This was
demonstrated in [4, 5], rediscovered in [6] and verified experimentally in [7]. Its properties
have been further examined in [8]. This operator, which was overlooked in [1], should be
crucial for investigating number-phase entanglement. In this comment, we complete the
approach of Fan showing that this operator serves to construct genuine maximally entangled
states with respect to the amplitude and phase variables.

The unitary operator exponential of the phase difference E is naturally defined by the
unitary solution of the two-mode polar decomposition
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where a1, a2 are the annihilation operators for the corresponding modes. It has been shown
that this equation admits unitary solutions E†E = EE† = 1 [3, 5]. It should be noted that
the product of Susskind–Glogower operators used in [1] is a non-unitary solution of the same
polar decomposition (1). On the other hand, the operational phase operator finally considered
in [1] satisfies a different polar decomposition that is not proportional to a1a

†
2, so it represents

a phase-angle variable different from what is usually understood as the phase difference.
For continuous Cartesian conjugate variables Xj, Pj , with j = 1, 2 and [Xj , Pj ′ ] =

iδj,j ′ , [Xj,Xj ′ ] = [Pj , Pj ′ ] = 0, the common eigenstates of the commuting operators X1 −X2

and P1 +P2 are maximally entangled states for the X, P variables [9]. In our case the conjugate
variables are number and phase. Accordingly, it can be expected that the simultaneous
eigenstates of the phase difference E and the number sum a

†
1a1 + a

†
2a2 (total number) are

maximally entangled states.
It can be seen that their common eigenvectors are the states |N,φN,r 〉

E|N,φN,r 〉 = eiφN,r |N,φN,r 〉
(
a
†
1a1 + a

†
2a2

)|N,φN,r 〉 = N |N,φN,r 〉 (2)

with

|N,φN,r 〉 = 1√
N + 1

N∑
n=0

einφN,r |n〉1|N − n〉2 (3)

where |n〉j are number states in the corresponding mode,

φN,r = φN,0 +
2π

N + 1
r r = 0, 1, . . . , N (4)

and φN,0 are arbitrary phases.
It can be deduced by simple inspection that |N,φN,r 〉 are maximally entangled states,

as conjectured above. This was already noted in [10] and applied to quantum teleportation
in [11]. This completes the key of this comment: to demonstrate the existence of genuine
amplitude–phase entanglement derived from a bona fide phase-difference operator overlooked
in [1].
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